diff --git a/.gitignore b/.gitignore new file mode 100644 index 0000000..763513e --- /dev/null +++ b/.gitignore @@ -0,0 +1 @@ +.ipynb_checkpoints diff --git a/jupyter/Makefile b/jupyter/Makefile new file mode 100644 index 0000000..2e5218c --- /dev/null +++ b/jupyter/Makefile @@ -0,0 +1,2 @@ +all: + jupyter nbconvert --to html "The Art of Memory Loss.ipynb" --config jupyter_nbconvert_config.py diff --git a/jupyter/Untitled.css b/jupyter/The Art of Memory Loss.css similarity index 100% rename from jupyter/Untitled.css rename to jupyter/The Art of Memory Loss.css diff --git a/jupyter/Untitled.html b/jupyter/The Art of Memory Loss.html similarity index 98% rename from jupyter/Untitled.html rename to jupyter/The Art of Memory Loss.html index df830a2..e6c7cbc 100644 --- a/jupyter/Untitled.html +++ b/jupyter/The Art of Memory Loss.html @@ -3,7 +3,7 @@ -Untitled +The Art of Memory Loss @@ -15556,7 +15556,7 @@ $$
-

Wir können alle Übergangswahrscheinlichkeiten $P(s \to s')$ elegant als Matrix $M$ notieren:

+

Wir können alle Übergangswahrscheinlichkeiten $P(s \to s')$ als Matrix $M$ notieren:

$$ M = \begin{pmatrix} m_{LL} & m_{LR} \\ m_{RL} & m_{RR} @@ -15564,6 +15564,259 @@ M = \begin{pmatrix} 1 - p & p \\ q & 1-q \end{pmatrix} $$ +
+
+ + +
+
+ + +
+
+
+
+ + +
+
+
+
+ + +
+
+
+
+ + +
+
+
+
+ + +
+
+
+ + +
+ +
+
+
+ + +
+
+
+
+ + +
+
+
+ + +
+ +
+ + + + + +
+ +
+
+ + +
+ +
+ + + + + +
+ +
+
+
+ + +
+
+
+ + +
+ +
+
+
+ +
@@ -15572,18 +15825,15 @@ $$
- +